From Hydrology@ASU

Revision as of 06:52, 25 April 2014 by Enrique Vivoni (Talk | contribs)
Jump to: navigation, search
Tromble Weir Watershed at the Jornada Experimental Range.

Contents

Jornada Experimental Range (JER), Las Cruces, New Mexico:

JER web site

Our group collaborates on the JER Long Term Ecological Research (LTER) site with New Mexico State University, USDA Agricultural Research Service and other universities to study the causes and consequences of woody plant encroachment and to address ecohydrological questions in desert rangelands. We have instrumented a small watershed consisting of a mixed Chihuahuan Desert shrubland, where we have on-going measurements and modeling studies of hydrological, meteorological and phenological processes. The instrument network consists of 20 soil moisture profiles around an eddy covariance tower and 15 soil moisture profiles arranged along hillslope transects. A network of rain gauges and channel runoff flumes is also deployed. A COSMOS soil moisture sensor with ancillary data has been recently installed with data available here Results from the observational efforts are reported in Vivoni (2012), Templeton et al. (2014) and Vivoni et al (2014).


Watershed 8 at Santa Rita Experimental Range.

Santa Rita Experimental Range (SRER), Green Valley, Arizona:

SRER web site

Our group collaborates on the SRER activities with the USDA Agricultural Research Service and the University of Arizona to study long-term vegetation changes and their impact on land surface processes including the active role of grazing practices. We have instrumented a small watershed located consisting of a Sonoran Desert mesquite savanna with an environmental sensor network and have obtained high-resolution imagery from aircraft platforms to study seasonal ecohydrological dynamics and the role of land surface conditions. The instrument network consists of 20 soil moisture profiles around an eddy covariance tower and 25 soil moisture profiles arranged along transects. A network of rain gauges and channel runoff flumes is also deployed a COSMOS soil moisture sensor with ancillary data has been recently installed with data available here Results from the observational efforts are reported in Pierini et al. (2014) and Vivoni et al. (2014).


Precipitation Gauge in Rio Sonora Hydrologic Observatory.

Rio Sonora Hydrologic Observatory (RSHO), Rayon, Sonora, Mexico:

Sonora Field Campaign web site

Our group helps lead a large-scale hydrologic observatory in Sonora, Mexico with collaborators from the Universidad de Sonora and Instituto Tecnologico de Sonora with the goal of quantifying ecohydrological processes during the North American monsoon. The observatory includes a regional network of precipitation, soil moisture and evapotranspiration measurements. In addition, several field campaigns have been conducted in the basin (SMEX04, IRES06-08, UMB-WEST) with the goal of assessing the dynamics of summer season vegetation green-up. A COSMOS soil moisture sensor with ancillary data has been recently installed with data available here Results from the observational and modeling efforts are reported in Vivoni et al. (2007, 2010), Mendez-Barroso et al. (2009), Mendez-Barroso and Vivoni (2010), Mascaro and Vivoni (2010, 2012), Mendez-Barroso et al. (2014), Xiang et al. (2014), among others.


Weather Station at North Desert Village.

Central Arizona Project (CAP-LTER), Phoenix, Arizona:

CAP-LTER web site

Our group collaborates on the CAP-LTER activities with other scientists at Arizona State University to study the water and energy interactions in urban Phoenix, in particular the role of irrigation on hydrological fluxes. We collaborate on the collection and analysis of hydrological and energy balance data at the North Desert Village, Indian Bend Wash and Maryvale sites, with the goal of conducting urban hydrological modeling of these neighborhoods. Results from the modeling efforts are reported in Volo et al. (2014).


Ecohydrology Study at Sevilleta National Wildlife Refuge.



Sevilleta National Wildlife Refuge (SNWR), Socorro, New Mexico:

Sevilleta LTER web site

Our group conducted a multiyear ecohydrological study in the Sevilleta National Wildlife Refuge at a headwater basin exhibiting stark contrasts in eccosystem, soil and terrain properties driven by aspect differences. The overall goal has been to quantify soil-water-climate-plant interactions on complex terrain to improve our understanding of the active role of plants in the co-evolution of soils and landscapes. An extensive instrument network consisting of 4 rain gauges, 8 runoff plots, 3 Bowen Ratio stations and micrometeorological measurements and 3 soil moisture and temperature transects. These measurements were complemented with a differential GPS survey and a LiDAR canopy height and bare-earth digital elevation models. Results from the field study and modeling efforts are reported in Gutierrez-Jurado et al. (2006, 2007, 2013a, 2013b, 2014).

DOE Warming and Watering Experiment.


Canyonlands Research Station (CRS), Moab, Utah:

USGS CRS web site

Our group collaborates with scientists from the USGS Canyonlands Research Station to study the water and energy fluxes in the Colorado Plateau and the role played by biological soil crusts. We collaborate on data analysis stemming from long-term manipulative (warming and irrigation) experiments with the goal of developing hydrological models that account for the important ecohydrological role of biological soil crusts.